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Abstract

The unexpected pedestrian-excited vibration of London’s Millennium Bridge was
caused by its low damping and high live load.  Several other examples of bridges
which vibrate significantly when carrying a crowd of people have since come to light.

This paper reviews results for the dynamic loading caused by moving pedestrians, for
both vertical and lateral vibration. The phenomenon of “synchronisation” by which
people respond naturally to an oscillating bridge when this has a frequency close to
their natural walking or running frequency is an important factor in increasing the
severity of loading.

By increasing modal damping, synchronisation can be prevented. This is how the
London Millennium Bridge’s problem was solved. But how much damping is needed
in any particular situation? By making some simplifying assumptions about how
people walk or run, it is possible to predict minimum required damping levels to
ensure that synchronisation does not lead to high vibration levels. These predictions
are compared with published bridge response data and found to be in reasonable
agreement.
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INTRODUCTION

To mark the Millennium, a new footbridge was built across the river Thames in
London. When the bridge was opened, it was found to sway noticeably. With a large
number of pedestrians, its sideways movement was sufficient to cause people to stop
walking and hold on to the hand-rails. Video pictures showed that lateral movements
up to 75 mm amplitude occurred with frequencies in the range 0.8 to 1 Hz. Probably
higher amplitudes occurred periodically and several modes were involved. The deck
movement was sufficient to be uncomfortable and to raise concern for public safety.
It took 18 months to research the problem and make the necessary modifications.

BACKGROUND

A report in 1972 quoted by Bachmann and Ammann in their IABSE book (1987),
described how a new steel footbridge had experienced strong lateral vibration during
an opening ceremony with 300-400 people.  They explained  how the lateral sway of
a person’s centre of gravity occurs at half the walking pace. Since the footbridge had
a lowest lateral mode of about 1.1 Hz, and people typically walk at about 2
paces/second, their frequency of excitation is 1 Hz which is close to this natural
frequency. Thus “an almost resonating vibration occurred. Moreover it could be
supposed that in this case the pedestrians synchronised their step with the bridge
vibration, thereby enhancing the vibration considerably” (Bachmann, 1992, p. 636).
The problem was solved by the installation of horizontal tuned vibration absorbers.

A later paper by Fujino et al. (1993) described observations of  pedestrian-
induced lateral vibration of a cable-stayed steel box girder bridge of similar size to the
Millennium Bridge. It was found that when a large number of people were crossing
the bridge (2,000 people on the bridge), lateral vibration of the bridge deck at 0.9 Hz
could build up to an amplitude of 10 mm, while some of the supporting cables whose
natural frequencies were close to 0.9 Hz vibrated with an amplitude of up to 300 mm.
By analysing video recordings of pedestrians’ head movement, Fujino concluded that
lateral deck movement encourages pedestrians to walk in step and that
synchronisation increases the human force and makes it resonate with the bridge
deck. He summarised his findings as follows: “The growth process of the lateral
vibration of the girder under the congested pedestrians can be explained as follows.
First a small lateral motion is induced by the random lateral human walking forces,
and walking of some pedestrians is synchronised to the girder motion. Then resonant
force acts on the girder, consequently the girder motion is increased. Walking of
more pedestrians are synchronised, increasing the lateral girder motion. In this
sense, this vibration was a self-excited nature. Of course, because of adaptive nature
of human being, the girder amplitude will not go to infinity and will reach a steady
state.”

Enquiries subsequent to the opening of the London Millennium Bridge
identified some other interesting examples of pedestrian-excited bridge vibration (see
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Dallard et al. 2001), including the surprising vibration of the Auckland Harbour
Bridge in New Zealand. This is an 8-lane motorway bridge, with three separate
parallel roadways. In 1975, one roadway, with two traffic lanes, was closed to
vehicles to allow a large crowd of walkers to pass over the bridge. Contemporary
newsreel footage shows the crowd walking in step as the roadway built up a large
amplitude lateral vibration at about 0.6 Hz. This vibration was serious enough for
stewards to go through the crowd calling for walkers to break step, when it subsided
naturally. It is interesting that the walkers had not intended to march in step, but had
naturally fallen into step with each other, apparently after the bridge began to sway.

PEDESTRIAN LOADING DATA

The book by Bachmann and Ammann (1987) discusses loading from human motions,
distinguishing between walking, running, skipping and dancing. For walking and
running, the authors point out that dynamic pavement load is dominated by the pacing
frequency (table 1).

Published data on dynamic loads is thin, but Bachmann and Ammann quote
an example for a pedestrian walking at 2Hz when the fundamental component (at 2
Hz) of vertical dynamic loading is 37% of static weight and the fundamental
component (at 1 Hz) of lateral dynamic loading is 4% of static weight. In the vertical
case, harmonics are less than about 30% of the fundamental in amplitude (a typical
load-time history is shown in fig. 1); in the lateral case there may be a significant 3rd

harmonic and an example is quoted in which the 3rd harmonic exceeds the lateral
fundamental in amplitude.

Pacing
frequency

Forward
speed

Stride
length

Vertical
fundamental
frequency

Horizontal
fundamental
frequency

f (Hz) V (m/s) L (m) Fvert (Hz) Flat (Hz)
Slow walk 1.7 1.1 0.60 1.7 0.85
Normal walk 2.0 1.5 0.75 2.0 1.0
Fast walk 2.3 2.2 1.00 2.3 1.15
Slow running
(jogging)

2.5 3.3 1.30 2.5 1.25

Fast running
(sprinting)

>3.2 5.5 1.75 >3.2 >1.6

Table 1: Data on walking and running from Bachmann and Ammann (1987).

These forces are for people walking on stationary pavements, but it is noted
by Bachmann and Ammann that “pedestrians walking initially with individual pace
on a footbridge will try to adjust their step subconsciously to any vibration of the
pavement. This phenomenon of feedback and synchronisation becomes more
pronounced with larger vibration of the structure.”  Also,  for vertical vibration, the
authors note that displacements of the order of 10-20 mm have to occur for the
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phonomenon to be noticeable, although they say that it is more pronounced for lateral
vibrations. “Presumably, the pedestrian, having noticed the lateral sway, attempts to
reestablish his balance by moving his body in the opposite direction; the load he
thereby exerts on the pavement, however, is directed so as to enhance the structural
vibration.”
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Fig. 1   Vertical load versus time graph from footfall during walking at 2
paces/second (after Bachmann and Ammann, 1987).

SYNCHRONISATION

Fujino et al. (1993) estimated from video recordings of crowd movement that some
20% or more of pedestrians on their bridge were walking in synchronism with the
bridge’s lateral vibration which had a frequency of about 0.9 Hz and an amplitude of
about 10 mm. The authors computed the amplitude of steady-state lateral vibration of
this bridge, first using Bachmann and Ammann’s figure of 23 N for the amplitude of
lateral force per person and assuming that the pedestrians walk with random phase,
and secondly using a force per person of 35 N and the measured result that 20% of
them were synchronised to bridge movement. For the random phase case, the
calculated amplitude was about 1 mm response; for the 20% correlated case it was
about 15 mm (compared with 10 mm measured).
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Fig. 2   Measured values of pedestrian lateral dynamic force/static weight
as a function of pavement amplitude (after Dallard et al, 2001, fig. 10)
with data by Bachmann and Ammann  (1987) and Fujino et al (1993)
added. The platform in these experiments was 7.3 m long and 0.6 m wide
with a handrail along one side. The amplitude of the fundamental
component of lateral force is plotted after dividing by the subject’s
weight. Arup’s data is for two different frequencies of pavement
oscillation: 0.75 and 0.95 Hz. It appears that subjects walked at a
comfortable speed with a walking pace not intentionally “tuned” to the
pavement frequency. Fujino’s figure is an estimated force amplitude from
observations of people walking on a bridge with a 1 Hz lateral mode at an
amplitude of about 10 mm. The three added lines (drawn for comparison),
are for moving a rigid mass at frequencies of .75 Hz (bottom line), .85 Hz
(middle), .95 Hz (top) through an amplitude of 15 mm (at the left) to 35
mm (at the right).

These results were thoroughly investigated following the London Millennium
Bridge’s problems by its designers, the Arup Partnership, with the results given in
Fitzpatrick et al. (2001) and Dallard et al. (2001).  Using moving platforms, data was
measured on lateral dynamic force and on the probability that a pedestrian would
synchronise with pavement lateral vibration. Results obtained by Arup using a
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shaking table at Imperial College are shown in fig. 2 which has two other results
added. It can be seen that the fundamental component of lateral force increases with
platform amplitude but is insensitive to pavement lateral frequency. However walkers
were not asked to try to intentionally “tune” their step to the platform’s motion;
instead they were asked to walk comfortably for the 7 or 8 paces required to pass over
the platform.  Fig. 2 has three added lines which demonstrate the ratio of dynamic
lateral force/static weight for a rigid mass when oscillated at .75 Hz (bottom line), .85
Hz (middle line) and .95 Hz (top line) when the amplitude of oscillation increases
linearly from 15 mm at the left-hand side to 35 mm at the right-hand side.  This
would apply if a pedestrian were modelled as a rigid mass whose centre-of-mass
moved through an amplitude of 15 mm on a stationary pavement and increased
linearly with pavement amplitude to 35 mm when the pavement amplitude became 30
mm.

Fujino et al (1993) noticed that a person’s lateral head movement is typically
twice that of their feet (laterally) at 1 Hz and ±10 mm pavement movement, so it is
not surprising that pedestrians do not behave as rigid bodies. But, although they do
not act as rigid masses, the lateral force a person generates must react against the
inertia of their body, so that the sum of mass×acceleration for all a person’s
component parts must equal the lateral pavement force at all times. Therefore, if an
average is calculated for each pedestrian, the results in fig. 2 suggest that their centre-
of-mass must be moving about ±15 mm when walking comfortably on a stationary
pavement, increasing linearly to about ±35 mm when the pavement’s lateral
movement is ±30 mm. The effect of frequency of pavement movement does not seem
to have much effect, with measured data for .95 Hz suggesting a slightly lower
dynamic/static force ratio than .75 Hz. This is consistent with the natural flexibility of
the human frame. Evidently if the pavement were oscillating at a high frequency, the
feet and legs would be expected to move, but the upper body would not follow so
much and would move relatively less. Movement of the centre-of-mass of the
pedestrian would then be significantly different from movement of the pavement.

Let a (scalar) parameter α  relate the amplitude of body movement caused by
pavement movement to the amplitude of the pavement.  Since, from fig. 3, we deduce
that a change in lateral pavement amplitude from 0 to 30 mm causes a change in
lateral body movement from 15 to 35 mm, 3/230/)1535( =−=α . This data suggests
that α  is approximately 2/3 at 0.75 Hz and at 0.95 Hz. Because of the complex
dynamics of the human frame, it is possible that the effect of different frequencies in
this range is small, as this data suggests.

Arup also studied the probability of synchronisation for people using the
walking platform at Imperial College and their results are shown in fig. 3. This is the
estimated probability that people will synchronise their footfall to the swaying
frequency of the platform. The “best-fit” straight line does not pass through the
origin. It suggests that people synchronise with each other when there is no pavement
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motion but that the probability of synchronisation increases as pavement amplitude
increases.  Based on this data, the probability of synchronisation is expected to be
about 0.4 for small amplitudes up to 10 mm.
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Fig. 3  Probability of synchronisation estimated by Arup from moving
platform tests for the same two frequencies of platform lateral oscillation
as in fig. 2, 0.75 Hz and 0.95 Hz (after Dallard et al. 2001, fig. 11).

In addition to laboratory tests, Arup conducted a series of crowd tests on the
Millennium Bridge. These concluded that pedestrian movement was strongly
correlated with lateral movement of the bridge but not apparently with vertical
movement. This was attributed in part to the conclusion that pedestrians are “less
stable laterally than vertically, which leads to them being more sensitive to lateral
vibration” (Dallard et al, 1992). However vertical bridge amplitudes were
significantly smaller than lateral amplitudes and it was concluded that vertical
synchronisation might occur. Vertical vibration control measures were added to the
bridge as a precaution against this possibility.

In the following analysis, the assumptions that will be made about pedestrian
loading are only appropriate for small-amplitude pavement movements (less than
about 10 mm amplitude). For larger amplitudes, people’s natural walking gait is
modified as they begin to lose their balance and have to compensate by altering how
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they walk. The staggering movement of pedestrians trying to walk on a pavement
which has large-amplitude lateral vibration (100 mm amplitude) has been studied by
McRobie and Morgenthal (2002a) using a swinging platform. Pedestrian movement
was followed by a motion capture system devised by Lasenby (see Gamage and
Lasenby, 2002, and Ringer and Lasenby, 2000). The way people walked on a
platform moving with such large amplitude varied from person to person. “A common
response was to spread the feet further apart and to walk at the same frequency as
the pre-existing oscillations such that feet and deck maintained a constant phase
relation.” although  “Other walking patterns, some involving crossing of the feet,
some involving walking in undulating lines were also observed.” (McRobie and
Morgenthal, 2002a). They also found that the lateral forces of the feet-apart gait are
phase synchronised to the structure, and approach 300 N amplitude per person, which
the authors point out is four times the Eurocode DLM1 value of 70 N for normal
walking.

ANALYSIS OF PEDESTRIAN-BRIDGE INTERACTION

A detailed analysis of the dynamic interaction between walking pedestrians and a
flexible bridge will be given in a forthcoming paper (Newland, 2003b). However
simplified calculations can be made to determine the limiting value of structural
damping required to ensure stability.

Consider the interaction between pedestrians of effective modal mass m
walking on a bridge with a vibration mode of (modal) mass M and stiffness K, for
small-amplitude vibrations. The interaction (modal) force which is transmitted from
the pedestrians to the bridge, and vice versa, is f.  This system is shown in fig. 4
where z(t) is the (effective) modal displacement of the pedestrians’ centre-of-mass
and y(t) measures the modal displacement of the bridge’s pavement or walkway.

M m

K

y(t)
z(t)

force   f

Fig. 4   Interaction between a bridge mode with modal mass M and
stiffness K and pedestrians with modal mass m. The (modal) force
transmitted between the pavement and pedestrians is f.  The symbol Ο
recognises that there is a complex interaction between pedestrians and
bridge recognised by the time delay ∆ and the correction factors α (in
equation 4) and β (in equation 12).
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The equations of motion are:

)()()( tftyKtyM −=+ &&&& (1)
)()( tzmtf &&= . (2)

Structural damping is not included, but if we assume viscous damping with
coefficient C, than, combining (1) and (2) gives

.0)()()()( =+++ tzmtyKtyCtyM &&&&& (3)

Because people respond to movement of the pavement, we assume that their
amplitude is given by yα  (generally less than the amplitude of the pavement, and
therefore of their feet, y) and with a time difference ∆  so that

)()( ∆−= tytz α . (4)

If steady-state harmonic conditions occur, then a solution is

)(exp)( tiYty ω= (5)

and, on substituting (4) and (5) into (3) and defining the phase angle

∆=ωφ , (6)

we find two equations, one each for the real and imaginary parts of (3), both of which
must be zero, so that

0cos22 =−+− φωαω mKM (7)

0sin2 =+ φωαω mC . (8)

These give the limiting condition for stable simple harmonic motion. The structural
damping coefficient C must exceed the value given in (8) if motion is to remain
stable, and so the condition for stability is

φωα sinmC −> . (9)

In this expression, the phase angle φ  depends on how the walking pedestrians
synchronise their step with movement of the pavement and the “worst case” will
occur when 2/πφ −= , when C will be greatest. Then 0cos =φ  in (7), and so the

frequency is the undamped natural frequency MK /=ω . In terms of the structural
damping ratio  ς   for the bridge with no pedestrians, defined by
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MKC 2/=ς , (10)

the condition for stability can be written finally as

Mm /2 ας > . (11)

This says that the structural damping ratio required for stability has to exceed
a limiting value given by the modal mass of the pedestrians divided by the modal
mass of the bridge, multiplied by a factor α  which relates the amplitude of body
movement of pedestrians to the amplitude of the pavement.

A complication is that not everybody naturally falls into step as small
amplitude movement of the pavement occurs and only a proportion β  may be
considered to have done so, reducing the effective pedestrian mass from m to mβ , so
that the final stability criterion is

Mm /2 βας > (12)

This result gives the key to calculating the amount of structural damping needed to
prevent self-excited oscillations building up. Using values for the parameters α  and
β  derived from the experimental data described above, it is possible to quantify how
much damping will be needed in any particular circumstance. Alternatively, if the
structural damping ratio ς  for a given mode is known, the safe modal mass of
pedestrians for that mode can be calculated from (12).

PEDESTRIAN SCRUTON NUMBER

McRobie has pointed out that there is an analogy between the wind excitation of
flexible structures and people excitation of bridges (McRobie and Morgenthal,
2002b). The tendency for vortex shedding to cause wind-excited structural
oscillations is measured by the non-dimensional Scruton Number which is a product
of damping and the ratio of representative structural and fluid masses. The usual
definition is

2/4 bMSc ρςπ= (13)

where ς  is the damping ratio of the relevant mode, ρ  is air density and, for a
cylindrical structure of diameter b, M is the mass per unit length of the structure.
Large Scruton numbers are preferable. McRobie suggested that the same approach
should be taken for pedestrian-excited vibration, distinguishing between vertical and
lateral vibration to allow for the different human responses to vertical and lateral
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pavement movement. The definition of pedestrian Scruton number is arbitrary, but for
the purpose of this paper

mMScp /2ς= (14)

where
Scp = Pedestrian Scruton number
ζ = modal damping ratio
M = modal mass, or, for a uniform deck, bridge

mass per unit length
m = modal mass of pedestrians, or, for a uniform

bridge deck with evenly spaced pedestrians,
pedestrian mass per unit length

For this definition, and substituting from (12), we conclude that, for stability, it is
necessary that

.βα>cpS (15)

The analysis uses the model in fig. 4. As defined already, α  is the ratio of movement
of a person’s centre-of-mass to movement of the pavement, which from the results
given previously has been found to be about 2/3 for lateral vibration in the frequency
range 0.75 to 0.95 Hz, and β is the correlation factor for individual people
synchronising with pavement movement, which is typically about 0.4 for lateral
pavement amplitudes less than 10 mm.

Typical data has been assembled from the sources available (which are
somewhat meagre and generally incomplete) and is reproduced below, fig. 6 (for
lateral vibration) and fig. 7 (for vertical vibration). It can be seen that the pedestrian
Scruton numbers for typical modes of the London Millennium Bridge were initially
very low, less than the limit given by (15) for the estimated numerical values of the
experimental parameters 3/2=α  (ratio of body movement to pavement movement)
and 4.0=β  (the correlation factor for people synchronising with pavement
movement). After modification to artificially increase the bridge’s damping, the
corresponding Scruton numbers are much higher, well above the upper limit from
(15) (with 1== βα ) and well above an alternative limit (17) suggested by Arup (see
below).

For lateral vibration, fig. 6, the estimated pedestrian Scruton numbers for both
Fujino’s bridge in Japan and the Auckland Harbour Bridge lie below the lower limit
from (15). In the case of vertical vibration, fig. 7, there is additional data available in
McRobie and Morgenthal (2002) for a number of “lively” bridges, all of which falls
below the lower limit. The Auckland Harbour Bridge is interesting because it falls
between the upper and lower limits calculated by using (15). This data was measured
during the course of a marathon race in 1992 when a large number of runners crossed
one of the two-lane roadways. It is recorded that vertical amplitudes of up to 3 mm
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were experienced in a frequency range of 2.6 to 3 Hz, which is noticeable by runners.
From this it may be concluded that vertical bridge oscillation of serious amplitudes
could be excited by the natural synchronisation of a large enough crowd of runners
(as distinct from a marching army in the traditional sense). That is why the decision
was taken to artificially increase the modal damping of vertical as well as lateral
modes for the London Millennium bridge.

ARUP’S ANALYSIS

As a result of a series of crowd tests, and an energy analysis of vibrational power
flow, Arup concluded that the correlated lateral force per person is related to the local
velocity by an approximately linear relationship which was found to hold for lateral
frequencies in the range 0.5 to 1 Hz (pacing frequency 1 to 2 Hz). It is interesting
that, within this frequency range, the results again appear to be insensitive to
frequency. If k is defined as the slope of a graph of the amplitude of average lateral
force per person plotted against the amplitude of pavement lateral velocity, Arup
found that k≈300 Ns/m for a bridge mode in the frequency range 0.5 to 1 Hz.

By assuming that each person generates a velocity-dependent force which acts
as negative damping, and making a modal calculation, they also concluded that
vibrational energy in the mode would not increase if (Dallard et al, 2001, p. 28,
equation 9)

( )MfkN πς 8/> (16)

where ς  is the modal damping ratio, f is the natural frequency, and M is the modal
mass. For this condition, the positive modal damping exceeds the negative damping
generated by pedestrian movement. On substituting (16) into (14) to calculate the
required pedestrian Scruton number, we find that the limiting condition is

)2(/ ocp mfkS π> (17)

where om  is the mass per person for whom k=300 Ns/m in the frequency range 0.5 to
1.0 Hz. This result has been added to fig. 6 using 75=om  kg per person.

CONCLUSIONS

The analysis in this paper shows that bridge vibration will become unstable when the
live load, represented by people of mass m per unit length, is too great a proportion of
the bridge’s dead load stemming from its mass M per unit length.
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Fig. 6  Some collected data on Pedestrian Scruton Number for lateral
modes. Limiting values from equation (15) with 4.0,3/2 == βα  and with

1== βα , and from equation (17), are shown for comparison.

The permissible m/M ratio depends on the amount of damping present in the
appropriate vibrational modes that will be excited by the pacing rate of pedestrians
because problems only arise when their excitation frequency is close to a natural
frequency of a lightly-damped vibrational mode. Specifically according to (12) it is
necessary for stability that,

Mm /2 βας > (18)

where ζ  is the ratio of critical damping in the mode and α and β are experimentally-
determined factors. From the data so far available, it appears satisfactory to assume
that α=2/3 relates movement of a person’s centre-of-mass to movement of their feet
(from the slope in fig. 2) and β=0.4 for bridge amplitudes up to about 10 mm (from
fig. 3). However these numbers derive from a limited number of experiments on
lateral vibration, and can only be regarded as provisional for lateral vibration and a
first indication of possible numbers for vertical vibration for which measurements
have not yet been made.
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Fig. 7   Some collected data on Pedestrian Scruton Number for vertical modes.

The dependence of a damping stability criterion on a mass ratio is consistent
with the experience of vortex-excited oscillations in aeroelasticity and application of
the pedestrian Scruton number defined by (14) allows this criterion to be expressed
alternatively by (15).  The results plotted in figs. 6 and 7 show clearly that
troublesome bridges all have pedestrian Scruton numbers that fall below the lower
limit given by (15). Similarly the London Millennium Bridge after modification lies
well above the upper limit on pedestrian Scruton number drawn by assuming that
both the factors α and β in (15) are unity, which is likely to be a very pessimistic
assumption.

The collection of more experimental data will be helpful in verifying these
conclusions but, in the meantime, the provision of damping above the upper limit
derived from (15) is likely to provide reasonable assurance that unexpected
pedestrian-excited bridge oscillations will not occur. The introduction of damping by
a combination of frame-mounted viscous dampers and tuned-mass vibration
absorbers, which cured the London Millennium Bridge’s vibration problem, met this
criterion.
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